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SECTION 1 

INTRODUCTION 

For decades the Hopkinson pressure bar has been used for measurements of blast and shock 
waves generated by explosions. It is a very useful instrument for close-in blast measurements 
because it is difficult for other instruments to survive both the blast loading and the environment 
near the center of the explosion. Despite its popularity in the explosion community, basic 
experimental studies of the dispersion of waves in the bar are rare. Technically there are two 
reasons for the lack of incentive to pursue the dispersive characteristics of a bar. First, an 
accurate method for determining a dispersion curve (the phase or group velocity as a function 
of frequency) from a signal captured in the form of a time sequence is not available. Second, 
several theoretical investigations in the past century have concluded that the basic mode of 
propagation is the first Pochhammer-Chree (PC) mode (Pochhammer, 1876, and Chree, 1889). 
Moreover, because these theoretical investigations were performed by scientific authorities such 
as Rayleigh and Timoshenko (see for example Kolsky, 1963), it is very difficult for anyone to 
cast doubt on this result. Although some indirect evidence of higher modes has been reported 
(Curtis, 1954), the first PC mode is still the most commonly used dispersion curve for the 
deconvolution of bar signals. In this report, we will present a mathematical technique that 
derives the dispersion curve from a measured signal (Section 2). Section 3 presents experimental 
data in the form of time sequences and the dispersion curves derived from them. These 
dispersion curves will show that the first PC mode is not the only mode of propagation for stress 
waves in water-jacketed bars. Section 4 shows the the deconvolved signals from the DISBAS 
code (Lee and Crawford, 1992 and 1993) that uses the derived dispersion curves. 



SECTION 2 

METHOD OF ANALYSIS 

In an earlier effort, we developed a rectangular-windowed Fourier series (RWFS) method (Lee 
and Crawford, 1993) to deconvolve dispersed stress or strain signals measured some distance 
away from the pressure end of a bar which is directly exposed to the blast from an explosion. 
We introduced die rectangular window to correctly account for the differences in times of arrival 
of the various frequency components in the blast The resulting RWFS method accounts for both 
times of arrival as well as phase shifts of the various frequencies. This was demonstrated to be 
a more accurate deconvolution technique than the classical Gorham method (Gorham, 1983) 
which accounts for phase shifts only. Aside from the accuracy, RWFS can identify nondispersive 
components in the signal. This is a distinct advantage because most signals measured in field 
tests are 'corrupted' to various degrees by electrical noise or other nondispersive effects. An 
example was reported in Reference 4, in which RWFS gave a warning of possible nondispersive 
components in the data. We identified these nondispersive components by dividing the signal 
into small time segments and calculating the local Fourier coefficients in each segment. 

Any segment can be viewed as the product of the signal and a rectangular window, and the 
Fourier coefficients of the segment can be calculated using RWFS. For a measured signal given 
as a time sequence, ty(t), of duration P, we can approximate the signal by 

<K0 = W(.t)J^aksm(akt 
(2J) 

where 0)t= kiUP, (Lee and Crawford, 1992), and the rectangular window function is given by 

W(t) = — +E — 
27     f^ tin 

sin 
(nn(T-t) -'^ Unt^ 

JT 
sin 

JT 
(2.2) 

which is the Fourier expansion of a periodic rectangular window that is unity for the period T 
and zero for the period   (27-1)7. For this discussion, we will omit discussions of the time of 
arrival and the phase shift, which are given in References 4 and 5. We will concentrate on the 
window itself. 

Suppose we choose a narrow window width T « P, and move this narrow window to t'. 
We then compute the ak in this interval by convolving 0(f) with each component of the series 
in Equation 2.1. The power spectrum obtained from the squares of the ak gives the local 
frequency spectrum of the signal ty(t) at t *, modified by the window function. In this way, 
every interval T in P contains a set of coefficients ak that describes the frequency contents 
of that interval. If the signal is dispersive, the spectrum at each time interval will change 
according to the dispersion. In particular, the power associated with a given frequency 
component will peak at the time of arrival of that component. In other words, the locus of the 
times of arrival of these power peaks plotted in frequency-time space delineates the group 



velocities of the frequency components in the signal. The difficulty with the rectangular window 
is that the amplitudes of the high frequency components of 0(r) in the 
interval r* and t'+T are modified by those produced by the rectangular window. 

For this work we used the Gaussian window, which has the advantage of being localized in both 
the time and frequency domains. Other window functions have been proposed (Daubechies, 1986 
and 1990) in the context of wavelet transforms. In the present Gaussian window Fourier 
transform (GWFT), we compute the discrete transform of the product of the signal 0(r), and 
the translated Gaussian function g(t-x) centered at the time x, by the discrete version of 

C(co,x) = j $(t)g(t-v)exp(-i(at)dt 
—«a 

which is, after noting that the signal 0(0 is zero for t  < 0, 

c,„„ =   J W)g(t-nAt)exp(-imGi0t)dt 

(2.3) 

(2.4) 

where coo is the discretized frequency increment, and At is the time increment, which gives 
the information in Equation 2.3 in a uniformly spaced lattice. These coefficients are complex 
in general, and instead of displaying their real and imaginary parts, we display the power. Note 
that C(Q),x) is a continuous function of two variables and Cmn is a coefficient defined on a 
lattice.  The window function in the present case is a Gaussian, 

SCO =       exp 
G\/2n 

( \ 
lfxY 

v 2 v°; 
(2.5) 

where c is the window width parameter. Equation 2.4 is solved by taking the Fast Fourier 
Transform (FFT) of the product §(t)*g(t-nAt) which is equivalent to choosing coo to be the 
fundamental frequency in the signal 0(0, and allowing the highest frequency to be the Nyquist 
frequency.    The optimum window size is determined numerically.  See Appendix A. 

In order to test the method, we create a synthetic signal that has a linear rise time of 1 us, and 
an exponential decay after the peak with a decay constant of 5 us. The synthetic signal is 
dispersed three feet down a half inch diameter steel bar using the first PC mode. The dispersed 
signal from this pulse is analyzed by GWFT. The dispersion curve obtained by the method 
presented below agrees exactly with the first PC mode. This suggests that the GWFT technique 
can be used to derive dispersion curves from signals that are dispersive. 



SECTION 3 

DERIVATION OF A MEASURED DISPERSION CURVE 

We apply the GWFT to a set of 1/8-inch diameter steel bar data. This set of data is collected 
from an explosion in a steel water tank 16 inches in diameter (Coleman and Petersen, 1993). 
The pressure end of the bar is connected to the tank wall at the level of the HE charge. The 
bottom of the tank and the water free surface are at least 8 inches away from the HE charge. 
The signal is collected by a strain gage attached to the bar three feet away from the pressure end, 
which is flush mounted to the tank. The sampling time interval is 0.1 microsecond, which is 
short enough to ensure that high frequency details are captured by the data acquisition system. 
The digitizer full scale is 4096:1 (12 bits). The resolution is at least 500 steps for the maximum 
voltage change. 

A typical result of a pressure signal processed by GWFT is shown in Figure 3-1 in the form of 
a gray scale plot. The measured signal is shown vertically on the right hand side of the gray 
scale in Figure 3-2. The gray scale plot (a plot that divides black and white into various levels 
of gray to represent the magnitude of a quantity) represents the power of the Cmn. Note that 
we have chosen the convention that darker represents more power. Clearly, the power associated 
with the low frequency components is much higher than that with the high frequencies. In order 
to extract the dispersive properties of the bar, we have to concentrate on the times of arrival 
(ToAs) of the various frequencies, i.e., the arrival of the power associated with these frequencies. 
In the low frequency range (CO < n/4 Mrad/s) the power, represented by the darkened region, 
arrives at approximately the same time independent of frequency. See the upper left corner of 
Figure 3-1. From this we conclude that there is no measurable dispersion in this low frequency 
range; the GWFT is simply reproducing the low frequency information in the incident shock at 
the pressure end of the bar. Notice that this entire nondispersive region is darker than the higher 
frequency region of the plot, i.e., most of the power is carried by the low frequencies. There are 
also white (light gray) spots embedded in the gray scale plot. These are very low power 
locations where the Cmn change sign. Some interesting gray scale plots of the Cnm are 
presented in Appendix C. Because of the nondispersive nature of the low frequency region, 
deconvolution will not 'reorganize' the gray pattern in this region. 

The ToAs we derive in the low frequency region depend on the window width. For the present 
computation, a 10-us window is used; its width is determined by performing a set of detailed 
numerical experiments (see Appendix A). The width of the Gaussian window is varied from 2 
ps to. 15 us. In general, widening the window will shaipen the dark band in the frequency 
direction but cause more smearing in the time, and vice versa. The 10 us window is considered 
a good compromise. 

In the higher frequency range, co > id A Mrad/s, Figure 3-1 shows a high power region in the form 
of a dark band that curves toward the lower right of the figure. The level of light gray in the 
region above the dark band shows very little power arriving ahead of the band. This is evidence 
of dispersive behavior.   The fact that there is very little power between the low frequency 



hondispersive region and the dark band suggests that the incident signal carried most of the high 
frequency components in the front of the pulse. This in turn suggests that the incident signal at 
the pressure end of the bar is a shock because the usual compression waves do not carry high 
frequency components right at the wavefront. This is in agreement with our expectation that the 
explosion in the tank generates a water shock that impacts the pressure end of the bar. 

At this point we compare the arrivals of the theoretical dispersion modes of Pochhammer and 
Chree with the measured ToAs of peak power. We convert the first PC mode for this 1/8-inch 
steel bar to a ToA curve and plot it as a solid line on the gray scale plot, as shown in Figure 3-2. 
Clearly, the dark band (the high power region) in Figure 3-2 agrees with the theoretical arrivals 
very well. In the low frequency range, the first PC mode shows a small dispersive effect. 
Considering the thickness of the dark band in the upper left corner of Figure 3-1, it is difficult 
to discern this small an amount of dispersion from the experimental data. From Equation 2.3, 
it is clear that even if the function ty(t) begins with a sharp rise, the Gaussian window will 
smear it From the agreement between the dark band in the gray scale plot and the ToAs of the 
first PC mode, we conclude that the experimental dispersion curve derived from this water- 
jacketed 1/8-inch steel bar validate the theoretical first PC mode. 

Next, we process a signal from a 1/2-inch bar in the same set of experiments. The difference 
between the 1/2-inch and the 1/8-inch bar is that for the same frequency range, the group velocity 
curve for the 1/2-inch bar extends far beyond the minimum of the first PC mode. This allows 
us to examine the dispersive behavior of the bar in regions where higher modes may exist. 
Figure 3-3 shows the GWFT gray scale plot, and Figure 3-4 shows the measured signal plotted 
on the gray scale. Again, as in Figure 3-1', we observe that there is a region (CD < TC/4 Mrad/s) 
where very little dispersion is shown. The interesting point about this plot is the existence of 
multiple peaks and valleys in the dark band at frequencies higher than 7C/2 Mrad/s. Near the first 
minimum, ~n/2 Mrad/s, the dark band contains several abrupt jumps. At the second minimum, 
~l.l7i Mrad/s, there is a distinct change in slope in the dark band. These features are a 
combination of the spectral character of the incident shock and the dispersive character of the bar. 
Because we know from the 1/8-inch bar signal that the incident signal is a shock, the high 
frequencies are expected to impact the bar at ToA, and then propagate down the bar according 
to the dispersive character of the bar. 

The abrupt jumps near the first minimum cannot be a characteristic of the dispersion in the bar. 
Mathematically, such behavior in the group velocity causes the hyperbolic system of equations 
to be ill-posed because, at the jumps, the characteristic velocity of propagation for that frequency 
component is multi-valued and can vary continuously over the full range of the jump. Physically 
this type of jump in the group velocity is not acceptable, either, because a wave at that frequency 
will have a group velocity that varies between the limits of the jump as it propagates down the 
bar. The acceptable explanation is that the jumps are results of the incident signal. The incident 
signal may not have all the high frequencies right at ToA; for example a pulse with multiple 
peaks may have the high frequencies delivered at slightly different times. The halfwidth of this 
pulse is ~ 25 us, so structure within the pulse may lead to features of that duration in the gray 
scale plot. When these frequencies are dispersed down the bar, they may superpose to form the 



observed jumps in the dark band. 

These jumps occur at a very steep part of the dark band, where arrivals of slightly different 
frequencies occur at distinctly different times. After smearing by the Gaussian window, these 
will form a vertical band that may resemble an abrupt jump. If this occurs at a mildly sloped part 
of the dark band, it will simply thicken the band. Because the mildly sloped region of the dark 
band is essentially nondispersive, the arrival of the same frequency at different times will simply 
be interpreted as characteristic of the incident signal. Clearly, the present GWFT technique is 
not sufficiently accurate to resolve the very steep portions of the dispersion curve because of the 
smearing by the window. 

On the other hand, the sudden change in slopes of the dark band at the valleys is mathematically 
and physically acceptable. This behavior suggests multimode propagation because, in general, 
for a single mode the slope of the group velocity changes smoothly with frequency. 
Mathematically, the hyperbolic problem should be separated into regions, each region governed 
by a well-behaved function for the group velocity. A simple way to explain the observed slope 
changes is that the dark band is a superposition of several modes governing wave propagation 
in this bar. This is a natural consequence of the set of nonunique solutions, from a mathematical 
point of view (see Whitham, 1974). Because the set of theoretical modes governing wave 
propagation in this bar is known, it is logical to try to match the observed modes by linear 
combinations of the theoretical Pochhammer-Chree modes. 

Figure 3-5 shows a plot of the first four PC modes in both phase and group velocities. The 
roughness in the group velocity curves is the result of taking numerical derivatives of the 
theoretical phase velocity curves. Because the group velocity is the physical quantity directly 
derivable from the measured signal, we will concentrate on the group velocity curves. We 
observe that as the scaled frequency increases, more and more modes can potentially be involved 
in the propagation. Conventional bar gage deconvolution methods simply use the first PC mode 
to avoid the complexity introduced by the higher modes. The results shown in Figure 3-3, 
however, suggest simply using the first mode is inadequate for this 1/2-inch bar signal. The 
group velocity curves are converted to a set of ToA curves as shown in Figure 3-6. Figure 3-7 
shows the overlay of these modes on the gray scale plot. We observe that away from the valleys, 
the curvature of the first three modes matches the dark band almost exactly. In the high 
frequency region where multiple arrival from various modes is possible, the gray scale shows 
high power (darkened band) only for the earliest arriving mode. There is little power associated 
with the later arriving modes. This suggests that we can combine these modes using one single 
criterion, namely, that the mode with the faster group velocity dominates the propagation. The 
resulting ToA curve will be single-valued. Thus we are led to eliminate the late-arriving modes 
from this curve and overlay the resulting single-valued curve onto the gray scale plot of Figure 
3-3, as shown in Figure 3-8. The agreement between this theoretical combined-mode curve and 
the dark band is very good except near the first minimum of the first mode. This is strong 
evidence of the first three PC modes in the signal. 

In the interest of determining an experimental dispersion curve for the 1/2-inch steel bar, which 



is a commonly used bar material and size, we selected the time of peak power at each frequency. 
This defines a curve that lies in the middle the dark band. The ToAs of the high frequency 
components can be well approximated by the time of peak power. At frequencies below id A 
Mrad/s, the time of peak power is not a good approximation for the ToA. At these low 
frequencies, an adjustment to the time of peak power is applied for each frequency to establish 
the dispersion curve (see Appendix B). The resulting group velocity, computed 
from Cg((ü)=D/T((ü) , where T((ü) is the ToA for the frequency CO, together with the theoretical 
combined-mode curve, is shown in Figure 3-9. The jumps in the dark band in Figure 3-3 are 
obvious in the measured group velocity. Even though we understand that these jumps cannot be 
a part of the group velocity, we include them because leaving them out would lead to some 
undefined regions in the group velocity curve which would make calculation of the phase 
velocity impossible. 

To derive the corresponding phase velocity curve, which is needed as an input to the DISBAS 
code, recall the phase velocity Cp, and the group velocity Cg, are related by (Kolsky, 1963) 

Cg(co)   = ,   dcM) (3.1) 

where the wavelength, X, is related to the frequency by X = CI to. 
velocity definition is 

Cp((ü) ,= X j. 
CM 

dl 

The inverse of the group 

(3.2) 

which must be solved iteratively because of the implicit presence of C in the integrand 
(through co). An iterative solution starting with C (0) = C0 and using C (co-Aco) as the first 
approximation of Cp(co) is adequate. For the present three-mode problem, we break down the 
integral in Equation 3.2 into three integrals as follows. 

Cp(co) 

X 
i     I 

CM 

' cm x r^ 
i     l 
*' C„(co) x r VL rf/ + c 

i    r- 

dl for   Xx < X < oo 

dl + C,      for   X2<X<Xl 

for   X3<X<X2 

(3.3) 

We choose to shift from one mode to the next mode at the frequencies where the theoretical 
group velocity curves from the consecutive modes cross, and at those frequencies we use the 
theoretical phase velocity to restart the integration of the observed group velocity curve.  The 



numerical values are A., =0.0237 m,k, =0.01304 m A, =0.008227 m, C2 =7166.46 m/s, C3 = 
7027.46 m/s, and C0 = 5285.00 m/s for this bar. The resulting phase and group velocity curves 
derived from the measured signal through the use of the GWFT are shown in Figure 3-9, which 
contains also the theoretical combined-mode curves. The exact location of the first transition 
cannot be defined by the data due to the abrupt jumps. On the other hand, the assumption that 
the propagation is dominated by the fastest mode defines exactly the locations of these 
transitions. Because we used the theoretically defined transition points to derive the phase 
velocity curve, this curve should be considered semi-empirical as opposed to the measured group 
velocity curve, which is based solely on experimental data. 

The error associated with the experimentally determined ToA is probably comparable to the size 
of the Gaussian window. A rigorous analysis of how this error is propagated into the phase 
velocity would be extremely difficult due to the systematic nature of several other contributing 
uncertainties. We perform a Monte Carlo simulation of the error, presented in Appendix B. The 
results, which although not rigorous should be of the correct order, are shown on Figure 3-10. 
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SECTION 4 

DECONVOLVED SIGNALS AND DISCUSSION 

From the gray scale plot in Figure 3-1, it is clear that a significant amount of energy carried by 
high frequency components arrives after the bulk of the low-frequency energy. This suggests that 
for a 1/8-inch bar, if the sampling time interval is 0.1ns or less, deconvolution of the measured 
signal will improve the peak of the raw signal, and by removing the high frequencies from the 
latter part of the raw signal, the accuracy of the entire signal is improved. GWFT can thus be 
used to determine whether a signal can be improved by deconvolution. Referring back to Figure 
3-1, if the dark band does not extend beyond ~3TC/4 Mrad/s, which is the case for sampling 
intervals of ~1 us, performing deconvolution will not improve the signal at all. 

The 1/8-inch signal is deconvolved by the RWFS method, using the semi-empirical dispersion 
curve in the DISBAS code. (DISBAS stands for dispersed basis functions (Lee and Crawford, 
1993)) The undispersed signal is then analyzed by GWFT (the computer code is called GIFT-- 
we chose the i from the word 'window'). The gray scale for the undispersed pulse and the 
undispersed signal are shown in Figure 4-1. Comparing the pulses by themselves, the difference 
between the dispersed and the undispersed signals is very small- a few percent in the peak. 
Note that the patterns in the low frequency region are unchanged by the deconvolution. But the 
frequency spectra shown in the gray scales are very different. That shown in Figure 4-1 is a 
shock-the high frequencies associated with the shock arrive at the shock front. The dispersed 
wave spectrum shown in Figure 3-1 is not a shock spectrum-the high frequency components do 
not appear at the front. To see more clearly the difference between these two cases, the Fourier 
coefficients at the front of the measured and deconvolved signals in Figure 3-2 and Figure 4-1 
are plotted in Figure 4-2. These are the numerical values of the C„„, 2 us after ToA of the raw 
signal. The difference is obvious. In general, no dispersed signal is a good approximation to 
a shock.  The high frequency power in the dispersed pulse is less than the deconvolved pulse. 

We deconvolve the 1/2-inch bar signal using the DISBAS code with the semi-empirical 
dispersion curve. The undispersed signal shows two distinct peaks (Figure 4-3) of approximately 
the same magnitude. The width of the first peak, measured from the bottom of the valley in 
between the two peaks, is slightly smaller than the second peak, which shows a 'kink' on the 
descent from the first peak and another one on the rise to the second peak. Figure 4-4 shows the 
front of three deconvolved signals from this measured pulse, one using the theoretical combined- 
mode, another using the semi-empirical dispersion curve, and a third one using the first PC mode. 
Figure 4-5 shows the complete deconvolved signal using the semi-empirical combined-mode 
curve. The semi-empirical curve gives the sharpest shock front for the deconvolved signal. The 
theoretical combined-mode curve gives a step on the rise to the second peak but a more gradual 
rise to the peak. Recall from Figure 3-9 the group velocities of the second and third modes in 
the semi-empirical dispersion curve are slightly slower than those given by the theoretical 
combined-modes. This means that the frequencies associated with the second and the third 
modes will be 'pushed' further toward the front upon deconvolution. Although the first PC mode 
is able to give the double peak structure, the deconvolved signal shows a gradual rise as well as 
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a lack of structure in the peaks. Figure 4-6 shows a comparison of the first 50 us of the 
deconvolved pulse using DISBAS with the combined-mode curve and that using Gorham's 
method with the first PC mode. Aside from the Gibbs oscillations typical of Gorham's results, 
the definition of the peaks is not as sharp and there is no step to the second peak. The 
deconvolved signal obtained from the semi-empirical dispersion curve is more accurate because 
the dispersion of the high frequency components are included in the deconvolution as defined by 
the measured signal. 

Because this signal and the 1/8-inch bar signal are obtained under identical experimental 
conditions, the deconvolved signal from the 1/8-inch bar should give the same double peak 
structure. Figure 4-1 shows the deconvolved signal for the 1/8-inch bar. The deconvolved signal 
shows multiple peaks. It appears that each peak in the raw signal is turned into a double peak, 
and the combined width of the two peaks is almost the same as the deconvolved 1/2-inch signal. 
We examined several other 1/8-inch bar records from this experiment. All of them show multiple 
peaks. 

The agreement between the deconvolved signals from the 1/8-inch and the 1/2-inch bars is only 
approximate. Because the initial loading shock wave has to be the same (due to spherical 
symmetry) for these signals, the difference in the nature of these peaks has to be the result of 
differences in the bar geometry. Figure 4-7 shows the two adaptors used for the 1/8-inch and 
the 1/2-inch bars. The sizes of the two adaptors are the same; in particular, the surface exposed 
to the shock has the same total area (the sum of the bar area and the adaptor area). When a 
shock impacts the bar-adaptor structure, the first signal transmitted to the sensing element is 
directly through the bar itself. A second signal coming from the adaptor also squeezes the end 
of the bar, but part of this signal has to pass through the water jacket before reaching the side 
of the bar. The total impulse delivered to the bar-adaptor structure is the same for both bars, but 
the portions of the impulse coming directly through the bars themselves are different. This is 
because the 1/8-inch bar occupies l/80th of the area exposed to the shock but the 1/2-inch bar 
occupies 1/5 of the area. The accuracy offered by the combination of the GWFT, DISBAS, and 
the new combined-mode dispersion curve can be used to estimate detailed effects of the armor 
and the water jacket. These effects will be examined by a separate 2D continuum mechanics 
code. As long as bars of different diameter adaptors are used, the deconvolved signals cannot 
be expected to agree exactly even if the experiment were ideal. 

Finally, we present a bar signal recorded in a recent underground test. The signal and its gray 
scale are shown in Figure 4-8. The bar used is a 3/8-inch diameter tungsten carbide bar. The 
sampling time is 0.1 us. The gray scale plot shows a very distinct band at 37T/4 Mrad/s that 
appears to correspond to another phenomenon specific to the underground test. The combined- 
mode dispersion curve for tungsten carbide is shown in Figure 4-9. Figure 4-10 shows the 
deconvolved signal using DISBAS and the theoretical combined-mode dispersion curve. For this 
signal there is a distinct reverberation in the latter part of the deconvolved pulse (after 120 us). 
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SECTION 5 

CONCLUSIONS AND RECOMMENDATIONS 

We presented a mathematical technique GWFT (GIFT code) that is capable of deriving the 
dispersion modes from a bar signal. The character of the derived signatures agrees with the first 
three modes of Pochhammer and Chree. These signatures further suggest that, in frequency 
regions where multiple modes exist, the faster mode dominates. This information allows the 
construction of a dispersion curve from the signal. Using this method, we analyzed a set of 1/2- 
inch steel bar data taken from a set of water tank explosion experiments. We found that the 1/2- 
inch water-jacketed bars have a dispersion curve that can be represented by the combination of 
three PC modes. In regions where multiple modes exist, the faster mode is used. In this way, 
we created a theoretical combined-mode group velocity dispersion curve, and constructed the 
corresponding phase velocity curve from that We also constructed a group velocity curve solely 
from the measured signal; and then constructed a semi-empirical phase velocity curve from that. 
Although the deconvolved signals from the semi-empirical curve gave a sharper shock and more 
structure at the peaks, we recommend using the combined-mode curve for deconvolution in 
general. After all, a detailed signal that allows the derivation of a highly accurate experimental 
dispersion curve is not easily obtained. . It is definitely not a standard practice among 
experimenters in the field of explosive effects research. Moreover, because the semi-empirical 
curve contains some peculiar characteristics that pertain to this particular set of water tank 
experiments, the derived dispersion curve is strictly applicable only to this set of data. We used 
the semi-empirical curve to deconvolve the signals presented in this report because we wanted 
to demonstrate for the first time that an adequate dispersion curve can be derived from the signal 
for deconvolution puiposes. We presented two new combined-mode dispersion curves, one for 
a high strength steel bar and the other for a tungsten carbide bar. The combined-mode dispersion 
curve gives better resolved peaks for the water tank data upon deconvolution using the RWFS 
technique (DISBAS code). The procedure of (a) using GIFT to derive the general character of 
the dispersion curve from the dataA(b) modifying the theoretical PC modes to reflect the results 
of (a), and (c) performing the deconvolution using DISBAS, is the most accurate way to 
deconvolve a dispersed signal. 

For blast and shock measurements, the best approximation to a shock is the deconvolved signal, 
not the raw signal, regardless of the size and speed of the bar. The 1/8-inch steel bar case was 
expected to show little difference in the spectra of the peaks in the deconvolved signal and the 
raw signal, but the peak from the raw signal lacks the high frequencies that distinguish a shock 
from a compression wave. 

The deconvolved signals from the 1/8-inch bar and the 1/2-inch bar agree only in impulse and 
half-width. They differ significantly in the detailed structure of the peak, which contains a 
number of peaklets in both deconvolved signals. The degree to which the raw 1/8-inch bar signal 
represents the deconvolved 1/2-inch bar record needs to be reexamined based on the differences 
in the respective bar-adaptor geometries. The detailed nature of the shock interaction with the 
bar-adaptor system must be studied.   This requires more sophisticated 2D code calculations. 
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When such a code is available, it will allow the analyst to examine the effects of the armor as 
well as the water jacket design prior to an experiment. 

We presented GIFT results of a bar gage record from a recent underground test. We caution that 
while the water tank data presented represent typical signals, this underground test signal is the 
only signal with such resolution in both time and frequency. The gray scale plot shows distinct 
features that are specific to the underground test/ Deconvolutions using the combined-mode 
curve were performed using the DISBAS code. The result shows features in the tail of the 
deconvolved signals that resemble wave reverberations. The RWFS technique is shown to be 
useful not only at better defining peaks and wave fronts but, by accurately removing the high 
frequency components from the tail of the raw signal, giving highly resolved undispersed 
information at the tail of the signal also. 

We recommend: (1) GWFT be incorporated into the bar gage design process prior to any blast 
and shock experiment, (2) GWFT be used to extract the character of the dispersion from the raw 
signal and (3) the theoretical Pochhammer-Chree dispersion relation modified by the results of 
(2) be used by DISBAS to obtain the most accurate deconvolution. 

The combined modes should be understood from a basic elastic wave propagation viewpoint 
which requires a 2D small strain code with advanced numerics that controls and minimizes 
numerical diffusive and dispersive errors. 
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APPENDIX A 

THE EFFECT OF WINDOW WIDTH ON GWFT 

In this appendix, we present a numerical study of the effect of varying the Gaussian window 
width. The objective of this study is to estimate an optimum window size for the data from the 
water tank experiments. Here we will refer to the gray scale plot of the power of the coefficients 
C    as the image because the main objective of this study is to learn how to sharpen the dark 

win ^ 

band. 

Before we sharpen the image, it is useful to reiterate the procedure for how these images (gray 
scale plots) are obtained, and deduce certain properties of the image from the mathematical 
formulation. Consider again Equations 2.3, 2.4, and 2.5. We compute the Fourier coefficients 
for the signal <)>(*), at the time x and the frequency co by the discrete form of 

C(o),x) =   j <$>(t)g(t-x)exp(-im)dt 
(A.1) 

which is 

cmn =   J*<KOs('-«AOexp(-/ay)^ 
(A.2) 

The window function is a translated Gaussian, 

g(t-x) = 
rV^jT 

exp 
\(t-xV (A.3) 

where a is the window width parameter, and x is the translation.   The ttanslated Gaussian 
function has the transform 

or, in discrete form, 

G(o)) = exp(-co2c72 -/cox) 

G    = exp(-m2(£>lcr/2-imn(ä0At) 

(A.4) 

(A.5) 

Comparing Equations A.3 and A.4 it is seen that a has the opposite effect on g and G. A small 
a sharpens g but widens G. In our application, the integral in Equation A.2 is expected to be 
strongly affected by the choice of the window parameter in the Gaussian. We therefore expect 
features in the image to display such an effect of the time window. 

We choose to look at the white spots as indicators of the resolution. They arise in the following 
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manner. Both the real and imaginary components of the Cmn are highly oscillatory in both time 
and frequency, and the phase relationship between the two at any given time and frequency is 
also quite variable. At the white spot locations both components are near zero, so the power is 
low. The Cmn are computed on a discrete grid whereas the true positions of zero power are not; 
some fall closer to grid points than others, so the white spots are not equally white. 

In this study, we start with a narrow time window. Figure A-l shows the result. The dark gray 
region in Figure 3-3, which stretches out to a frequency of ~rc/4 Mrad/s is now extended to ~ 7C/2 
Mrad/s. Note that the white spots that resemble diamonds in Figure 3-3 are now stretched into 
short, light gray streaks with smaller thickness. The frequency information is definitely smeared 
by this window. But the time resolution is excellent-particularly at the front of the pulse where 
the gray scale sharply darkens to maximum power. The rate of darkening in the time direction 
follows the rapid power rise of the pulse almost exactly. The narrow window makes the 
Gaussian very localized in time, but with poor frequency resolution. 

As the time window widens, Figure A-2, and A-3, the boundary of the darker low frequency 
region moves to the left At the same time, the light gray streaks begin to shrink to the shape 
of small ellipses. Further increases in the time window improve the resolution of the image in 
the high frequency region. By about Figure A-3 the dark band has taken the shape of the the 
semi-empirical dispersion curve. It is also clear that the dark region at the upper left of the 
figure is smearing more and more in the time dimension. This is to be expected as the window 
widens. Because there is very little dispersion in the low frequency region and the dispersive 
behavior in this region is well understood [1,2,3], we concentrate this study on optimizing the 
resolution of the dark band in the high frequency region and give up the accuracy in the low 
frequency region. 

As the time window widens further, Figure A-5 through A-8, the diamonds begin to turn into 
vertical ellipses. The ToA part of the signal, where the power sharply rises, is further smeared. 
The boundary between the low frequency dark region and the lighter high frequency region, 
however, has stopped moving to the left. Numerically this means that the frequency location of 
this boundary has converged. By convergence we mean further increases in the time window 
width will not move the boundary to a lower frequency. At the first maximum, the power is so 
smeared that it would be difficult to determine the arrival of those frequencies to within 25 us. 
On the other hand, the vertical part of the dark band is becoming more narrow. Recall the abrupt 
jumps in the dark band near the first minimum. The width of the dark band in this region is 
much better resolved by a time window of 14 us [Figure A-8]. 

We use the halfwidth (computed where the power is two orders of magnitude above its 
minimum) of the white spots as a measure of the resolution. Note that the general character of 
the half width of the white spots is insensitive to the exact magnitude of the power where the 
half width is computed as long as the chosen magnitude is neither too low (where it will be 
affected by noise), nor too high (where it is affected by the oscillations near the peaks). As we 
widen the time window, the halfwidths of the white spots in the time direction widens. As we 
reduce the window, the halfwidths decrease until they reach the sampling interval of the data. 

A-2 



The opposite behavior occurs in the frequency direction. As the time window is increased, the 
halfwidth in the frequency direction decreases until it reaches the Nyquist frequency of the data. 

Figure A-9 shows the average of the whitest spots. For this data set the frequency resolution is 
as good as possible (the Nyquist frequency) for window widths greater than about 10 us. The 
time resolution decreases with decreasing window size until the data sampling rate (0.1 us) is 
reached. Thus 10 us is the optimum window.. Wider windows sacrifice the time resolution; 
narrower windows sacrifice frequency resolution. 

We could have used other means of estimating the resolution of the white spots, such as 
computing the derivatives of C(co,x) with respect to frequency and time in the vicinity of the 
spots, but we do not feel that the choice of optimum window size would have been substantially 
different. 

In terms of numerical convergence, we learn from this study that as long as we define the region 
and the direction (time or frequency) that convergence is desired, it can be achieved. For the 
horizontal features, such as peaks and plateaus, reducing the time window will improve those 
aspects of the image, but a limit exists where the dark band cannot be further reduced regardless 
of how small the window is reduced. Widening the time window improves the image of the 
steep part of the dark band, namely, near the first minimum. Again, at some large window 
width, further widening will not change the width of the band. Judging from this behavior, we 
conclude that an optimum value for the window width exists. Of course, in theory a more 
defined dispersion curve can be derived by varying the window size for different portions of the 
dark band. This would require a significant effort, and the improvement in the accuracy of the 
dispersion curve is not expected to be large. Finally, we would like to point out that an 
acceptable optimum that gives reasonable resolution in both directions to allow the derivation of 
a dispersion curve may not exist for all dispersed signals. 
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APPENDIX B 

THE ERRORS IN THE SEMI-EMPIRICAL DISPERSION CURVES 

In this appendix, we will present the details of (1) how we check the gray scale results by 
analytical methods in the limit of small time and low frequency, and (2) how we estimate the 
error in the 'measured' group velocity curve and the corresponding semi-empirical phase velocity 
curve. The first is triggered by an artifact of the GWFT at low frequencies. But, until this 
artifact is understood analytically, it raises doubt in the numerical results as well as our 
interpretation of them. The second has to do with the treatment of errors from the experimental 
data and other sources. 

Before we examine the artifact of the GWFT in the low frequency region, it is useful to review 
our definition of the ToA of a signal, or any time sequence involving a sharp rise in the front 
of the signal. The ToA of the signal, in a plot of amplitude versus time, is determined by first 
locating the point of steepest slope in the early rise of the signal. Then a tangent is drawn from 
that location to intercept the zero amplitude line. The time of intercept is taken to be the ToA 
for the signal. The time between the ToA and the peak of the signal is called the risetime. The 
time at the peak is called the ToA of peak power. The method for the ToA is a standard 
procedure that we apply to all the pulses that we analyze, using DISBAS or GIFT. It avoids the 
problems with determining exact arrival times when a small 'toe' appears in front of the sharp 
rise. [The origin of the small toe is unclear, but it is observed in many measured pulses, and it 
has been determined to be not electrical in origin (Coleman and Petersen, 1993).] 

For a dispersed pulse, the ToA of the pulse is the ToA for the lowest frequencies, i.e. it is the 
time corresponding to zero phase for those frequencies. It is the ToA that must be used in 
determining the dispersion curve, not the ToA of peak power. We need a method to convert the 
time of peak power to ToA. In other words, we need an estimate of the risetime, therefore the 
ToA, for each time sequence. Recall the function C((0,T). For each frequency (0 there is a time- 
dependent function CB(x), where the subscript indicates fixed frequency. The ToA and the 
risetime for this function are determined the same way as for the signal itself. If the time 
sequence is a sine wave, the risetime is a quarter of the period of the sine wave. Therefore, 
depending on the character of the time sequence, we either apply a risetime correction or a 
quarter-cycle correction. Obviously we can use the theoretical first PC mode to 'fill in' the data 
in this region. We do not choose to do so because we want to derive the dispersion curve for 
group velocity assuming no prior knowledge of the theoretical PC modes. 

First, we present a rationale that leads to the risetime correction. The need for this correction 
is depicted in Figure B-l. As can be seen, the times of peak power at the lowest frequencies are 
later than those at slightly higher frequencies. This behavior is not visible in Figure 3-3, but very 
obvious in the expanded scale of Figure B-l. Although it is a small difference, ~ 10 us, it is big 
enough to be concerned with because one might erroneously interpret the delayed ToAs as the 
physical dispersion curve. Recall in Section 3 we choose to use the peak power arrival times 
to define the dispersion curve (based on 7\co) =D/Cg((a), where T((0) is the ToA of peak power, D 
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is the distance from the pressure end of the bar to the measurement point, and Cg((ö) is the group 
velocity. If these peak power times were used directly as the ToAs, the derived dispersion curve 
would possess the nonphysical feature of decreasing dispersion with increasing frequency. 

We demonstrate in Appendix A that narrowing the time window leads to better time resolution. 
The time delay in peak power arrival for the 2-us window in Figure A-l is uniform compared 
to that shown in Figure B-l. The improved time resolution removes the frequency dependence 
in the time delay of peak power ToA, but does not remove the risetime between the ToAs and 
the times of peak power. The frequency-dependent peak power times calculated with the 2-us 
window almost coincide with that of the raw signal. Furthermore, when the procedure for 
deriving the ToA from these time sequences is applied, the resulting ToAs for the CJz) in this 
low frequency region agree with that of the raw signal to within the size of the window. For this 
reason, we call this time delay an "artifact" of the GWFT method. However the improved time 
resolution is accompanying by poor frequency resolution. Thus we choose the optimum 10-us 
window, and are left with the necessity of removing the artifact of frequency-dependent risetimes. 
It is important to understand the nature of the image in this region based on this choice.To further 
understand the nature of the image in this region, we performed the following theoretical 
exploration. 

In theory, using the time of peak power arrival should work well at high frequencies, but at low 
frequencies the time of peak power arrival can be much larger than the time of arrival of the 
frequency component; the discrepancy can be of the order of a quarter of the period of that 
component  Recall Equation A.1, 

C((D,T)= j <\>(t)g(t-x)exp(-i(at)dt (B-1) 

which can be written as 

C(co,x) =    f $(t)g(t-T)exp(-iast)dt (B-2) 

because 0(0 = 0 for t < 0. For a given low frequency £m, we are interested in the early time part 
of the function C(eM,x) where for dispersed signals, the low frequencies are at the front of the 
pulse. For this analysis the function fy(t) is approximated by a step and a ramp. Because the 
Gaussian decreases rapidly as t increases, we will neglect the contribution to the integral at large 
times.  In the case of a step with for t > 0 and zero otherwise, the integral C(co,x), is 

B-2 



C(ew,x) =K | g{t-x)exp(-ieat)dt 
(B.3) 

where we have replaced the frequency co by em representing a small value, or low frequency. 
Upon substituting s=t-T, 

ae„,x) = K exp(-ie„T)   f *(*) exp(-/e-e„$) & 
i (B.4) 

o 
= K exp(-iEj) [ Jg(s) expH e„s) cfc + F(eJ ] 

where 

F(eJ = Iexp(-e;a2/2) + ///(ej (B.5) 

and 

l/ST«  (2A-1)!! 

and !! means factorial for every other integer (in this case odd integers are included). Inside the 
brackets in Equation B.4 there are two terms, a time-independent term and a transient term which 
starts from zero at x=0 and increases to F '(£„). The transient term contains both real and 
imaginary parts that are both oscillatory, meaning that when we take the product of C(£w,x) and 
its complex conjugate to obtain the power, the resulting expression will also be oscillatory. The 
observation we make in Appendix A that the function C(CD,X) is strongly affected by the 
Gaussian function is substantiated by this idealized step signal if we recognize the real part of 
the second term in the bracket is simply half of the transform of a Gaussian function g(t). 
Assuming the measured signal 0(f) can be approximated by a summation of positive and negative 
steps with time delays, this equation suggests that the GWFT of the signal is controlled by the 
Gaussian function and its transform. This is true except where the transient term dominates. 
[Note: This may be the reason why the white spots tend to avoid the high power regions. See 
Figure C-7 in Appendix C] Recall from Equation A.4, the transform of the translated Gaussian 
g(t-x) is 

G(£j =exp(-/E(flx)exp(-£*c2/2) (B-7) 

Note that the u-anslation (f-x) in the function g(t-x) added an oscillatory multiplier to the 
transform of the Gaussian.   At very early times, the transient term in Equation B.4 can be 
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approximated by ^(et/2)exp(-iemeT/2)*et/2 which contains a x-dependent oscillatory part with 
frequency em with a Gaussian multiplier. If the Gaussian window is narrow compared to 2/e^, 
the Gaussian will give the-function a first peak. If the step function has a delay, the Gaussian- 
produced peak will delay with it. If the window is wide compared to 2/ea, the first peak inC 
will be due to the oscillatory part. In any case, the Gaussian guarantees that the time function 
at each frequency begins with a zero value in both the real and the imaginary parts. To the 
extent that a measured signal can be approximated by a sum of steps with delays, this Gaussian 
multiplier assures that the front of the pulse will be reproduced to the resolution of the width of 
the window. This effect is in agreement with the image using the 2-us window in Figure A-l. 
The frequency-dependent time delay in the arrival of peak power at very low frequencies is 
definitely a function of the window width until the width is sufficiently small to make the ToA's 
uniform. For a given c, however, the delay is largest at the fundamental frequency, but 
decreases with increasing frequency. 

We arrive at essentially the same behavior when a ramp is used for the signal <}>(f) in Equation 
A.2. For ty(t)=At (for t >0, zero otherwise), we obtain the following 

C(co,x) = A exp(-/'ü)t) j (s+x) g(s) exp(-z'cois) ds 

= A exp(-/'cot)  j s g(s) exp(-/ow) ds (B-8) 

+ Ax exp(-/cox)  j g{s) exp(-/ow) ds 

The last integral is identical to the integral in Equation B.3.    The only difference is the 
coefficient in front of the integrals.  The first integral can be integrated by parts giving 

C(co,x) = Ag(z)a2 + Aexp(-/'cox) (x +/CDC
2
)  f g{s)exp(-ixas)ds ^^ 

From this equation and Equation B.7, we expect the power of the function C(co,x) for the ramp 
to be oscillatory also. For any signal, as long as the front of the signal can be represented by 
a step or a ramp, the behavior will be similar. However, in order to quantify the time difference 
between ToA and time of peak power, these equations will have to be solved. As can be seen, 
these integrals cannot be easily evaluated even in this small-time low-frequency regime. Since 
we already derived the general trends of C(co,x) from them, and these trends agree with the 
numerical solution given by the gray scale images, it is a lot easier to go directly to the 
numerical solution to make the adjustments based on the power plot of the measured signal. 

We return to Figure B-l. As can be seen, the time delay is larger at low frequencies but smaller 
at slightly higher frequencies. Apparently, the time to peak power at low frequencies is strongly 
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affected by the peak in the measured signal. From Figure 3-4, the raw signal has a rise time of 
~ 10 us. The peak power arrival times given in Figure B-l match that quite nicely. This fact 
is another indication that the front of the raw signal is dominated by low frequencies. At slightly 
higher frequencies, the time of peak power arrival is affected by the higher frequency oscillations, 
which tends to move the first peak to an earlier time. Although this behavior of the peak power 
arrivals does not agree entirely with the trend obtained from the step and the ramp signals 
(because those analytical functions do not contain a peak), the differences are understandable 
from the nature of the measured signal. 

Figure B-2 shows the corrected ToA data. The theoretical arrival times in this figure are 
generated using a pulse time of arrival of 65.5 us and a bar velocity of 0.5285 cm/us. At the 
lowest frequencies, there is a tendency to overcorrect because the duration of a quarter of the 
period is very long. At these very low frequencies (< TC/8 Mrad/s), we use the 2-us window 
results (Figure A-l) to determine the ToA for a given frequency. As mentioned in the context 
of Equation B.7, for a very narrow window, the front of the pulse will be reproduced by the 
Gaussian; the arrivals of the peaks of the low frequency components, C(em,T), are synchronized. 
The procedure for determining the ToA of a given frequency is the same as that for the raw 
signal; but, in place of the raw signal we use the time sequence for each mco0. The ToA of the 
synchronized low frequency components is 64.6 us, which agrees with the ToA of the raw signal 
determined the same way (65.5 us) to within 1 us. Thus, wherever the quarter cycle correction 
overcorrects, we set the ToA equal to the ToA found from the 2-us window for that frequency. 
The error introduced by the slightly earlier arrival (64.6 us) is included in the error analysis to 
be discussed next. At slightly higher frequencies, the corrections are smaller, and they do not 
lead to ToAs earlier than the ToA of the pulse. As the frequency increases, the quarter-cycle 
correction decreases rapidly as expected. [If we are willing to use the theoretical first PC mode 
to correct-the data, we will apply it to frequencies below 3rc/16 Mrad/s. From Figure B-2, at this 
frequency the peak power ToA curve overlays the one derived from the first PC mode.] 

Next, we address several sources of error that can affect the derived phase and group velocity 
curves. These fall into three general categories: the properties of the bar, the accuracy of 
calculations based upon the theory, and the processed data. 

There are three parameters characterizing the bar that enter the calculations: the diameter of the 
bar, the position of the sensor, and the bar velocity. Of these, the last is by far the least certain. 

The theory enters the calculations through the frequencies where propagation changes abruptly 
from one mode to the next. [Recall that the abrupt change from one mode to the next is an 
assumption. The derived peak power curve does not clearly identify the frequencies where the 
changes occur, so we use the theoretical values.] As these transition points must be found 
numerically, there is some small uncertainty about exactly where they occur. 

The processed data have three major sources of error: the time of peak power at each frequency, 
the assumed quarter-cycle correction at each frequency, and the pulse arrival time. Of all of 
these, none can truly be characterized as Gaussian in nature, and several are systematic.  This 
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makes a formal error analysis difficult. We have chosen a Monte Carlo approach. Each error 
is treated as uniformly random over some fixed range. The phase velocity is then computed 
many times, each with an independently selected set of parameters. The computed phase 
velocities from each sample are saved for later statistical analysis. With several error sources 
entering the problem in non-linear ways, the resultant phase velocity at each frequency appears 
to obey a Gaussian probability distribution, an outcome expected from the Central Limit Theorem 
(see Meyer, 1975). 

We ignore the uncertainty in the time of peak power that occurs at those frequencies where there 
are multiple peaks of nearly equal power. This is most severe at frequencies near the bottom of 
the valleys. We also ignore errors in the bar dimensions, as these are usually well controlled 
experimentally, and they should be small compared to the error in the bar velocity. 

We select the bar velocity from the range 0.5240 to 0.5300 cm/us, the arrival time from 62 to 
66 us, the error in each time of peak power from -1 to 1 us, the scaled frequency of the break 
between modes 1 and 2 from 0.3630 to 0.3638, and between modes 2 and 3 from 0.6470 to 
0.6482. We include the effects of the uncertainty in the delay by using a fraction of the 7t/2 
correction, chosen from 0.5 to 1.0 independently at each frequency. 

The results are shown in Figure B-3. The error in the group velocity is small at zero frequency, 
because there Cg = C0 and thus has only one source of error, and grows quickly as the uncertainty 
in the quarter-cycle correction predominates. As the frequency increases, the quarter-cycle 
correction error diminishes, and by about scaled frequency 0.2 the error is dominated by the 
errors in the arrival time and the peak power time. 

The phase velocity is found from the integral of the group velocity weighted by the inverse 
square of the wavelength (see Equation 3.2). Thus the phase velocity is smoother than the group 
velocity - much smoother near the mode transitions. [Of course, the raggedness in the group 
velocity curve near the mode breaks is not lost; it will return when the phase velocity is used to 
remove dispersion, as that process implicitly uses the derivative of the phase velocity.] On the 
average the relative width of the 95% confidence band is about ±1.15%, which translates to a 
standard deviation of 0.6%. 

Given the arbitrariness with which we assigned numerical values (and the uniform probability 
density function) to the various errors, the calculated uncertainty band cannot be considered 
definitive. However, we do feel that the values chosen for the calculation are reasonable, and 
the resulting 95% confidence band should be representative of a more rigorous analysis. 

The behavior of the phase velocity in the low-frequency regime has been well-established by 
previous research (Kolsky, 1963). Thus the crudity of our quarter-cycle correction should not 
lead to any loss of confidence in this part of the dispersion curve. The precision of our 
windowed transform analysis is better at higher frequencies where the character of the dispersion 
has not been previously determined empirically. 
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APPENDIX C 

AN EXPLORATION OF OTHER WAYS TO REPRESENT THE IMAGE 

Throughout this report, we have adopted one way of presenting the Cm„- the gray scale plot of 
the power. The plot of the power is the conventional way to display complex quantities such as 
the Cmn, but there are other ways of displaying the ToA curve. We have explored other avenues, 
which we discuss here. The motivations for this exploration are: (1) to gain further 
understanding of the dispersive phenomena involved, (2) to produce comparable results to 
contrast with those already obtained, (3) to gain more confidence in the validity of the numerical 
solution, and (4) to explore ways of deriving a more accurate dispersion curve. 

Figure C-l and C-2 are gray scale images of the real and imaginary parts of the Cmn. Although 
the images are somewhat confused by oscillations, the signature of the ToA curve is discernible. 
This means that we do not have to use the power to derive the signature of the dispersion modes. 
In the text and the appendices we have mentioned the white (or light gray) spots on the gray 
scale plot on Figure 3-3. They have been used as an indicator for the resolution in Appendix A, 
which led to the choice of the optimum window. Figure C-3 shows the location of the white (or 
light gray) spots on Figure 3-3, shown in black on this figure. The region where the ToA curve 
lies is not clearly visible. In fact, these black dots appear to have a uniform density across the 
plot. This means that using them as an indicator for the resolution will not over- or 
underemphasize any particular region in the plot We can make the ToA curve more apparent 
by enlarging the spots, which can be thought of as approximating the density of the spots. In 
Figure C-4 and C-5 each spot has been replaced by a rectangle of constant size and grayness. 
In regions where the spot density is high several rectangles overlap, resulting in dark patches. 
Similarly in Figure C-6 and C-7 each spot has been replaced by a two-dimensional Gaussian. 
Again overlapping regions produce dark areas indicative of higher spot density. The smaller 
Gaussians (Figure C-7) produce a plot that shows clearly that the spots tend to avoid the region 
containing the ToA curve. Figure C-8 and C-9 show the local total variation (LTV) in the real 
and imaginary parts of the Cnw. The LTV is defined as the sum of the absolute value of the 
difference between values at points adjacent in each direction. The size of the local region used 
in constructing the figures is the same as the large rectangles of Figure C-5. The plots are 
smoothly varying because each point has been replaced by the LTV of the region surrounding 
the point. If one were interested in obtaining an image without the confusion of the white spots, 
an LTV plot would be suitable. 

Each of these approaches brings out the ToA curve to one degree or another, but our first 
impression is that none of them leads to any interpretation of the data other than that reached 
from the gray scale plots of the power. The fact that all these approaches produce essentially 
the same image suggests that the observed ToA curve from these images is essentially 
independent of the method used to extract it, which in turn suggests that the ToA curve is an 
intrinsic physical property of the measured signal. This finding increases our confidence in the 
results and the interpretations presented in the text. 
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